
Task: TOW
Tower (author: Justas Klimas)
BOI 2025, Day 1: Analysis.

First, we try to split the polygon into two parts such that the size of each part is at least n/3 (and we
know which vertex belongs to which part). To this end, we choose a random pair of vertices u and v. Then,
we query about all the triples u, v, w, for w ∈ V \ {u, v}. This gives us the information whether w is closer to
u or v. If the query returns the pair u, v as the answer to the query u, v, w then we discard the pair u, v and
repeat the process. Otherwise, one part consists of all vertices that are closer to u than to v, while the other
part contains all the remaining vertices. It can be proven that after these steps the size of each part is at least
n/3. It is straightforward to calculate that the expected number of repetitions is constant.

We now assume that we have a contiguous part of the polygon of size ≤ 2n/3, and want to recursively
recover the order of the vertices there. This can be done similarly as above. We choose a random pair of
vertices u and v, and then query about all the triples u, v, w, for w ∈ V \ {u, v}. If the query returns the pair
u, v as the answer to the query u, v, w then we discard the pair u, v and repeat. Otherwise, one part consists
of all vertices w that are closer to u than to v, while the other part contains all the remaining vertices. Now
we don’t check their sizes but instead simply recurse. The expected number of repetitions is still constant
(for example, denoting the length of the current part by `, it is enough if u is among the first `/3 vertices
while v is among the last `/3 vertices, which happens with probability at least 1/9), and further with constant
probability each part consists of at least a constant fraction of the vertices (for example, assuming that u is
already among the first `/3 vertices while v is among the last `/3 vertices, each part consists of at least `/6
vertices with probability at least 1/4). Thus, with constant probability we recurse on two instances smaller by
a constant fraction, and otherwise (in the worst case) we repeat the random choice. By standard argument (as
in randomised QuickSort) the expected total number of queries is O(n log n).

There is one remaining detail: after returning from the recursive calls we need to reverse one or both of the
parts in order to make sure that the vertices in the middle are adjacent.

If we have two sequences x1, . . . , xn and y1, . . . , ym and we want to check whether their concatenation
x1, . . . , xn, y1, . . . , ym is a valid sequence of vertices in the polygon, we query about the triple xn−1, xn, y1.
We know that xn−1 and xn are adjacent in the polygon. Therefore, if we get xn, y1 in the answer, we know
that these two are adjacent as well, so the sequence x1, . . . , xn, y1, . . . , ym is a valid sequence of vertices in the
polygon. Otherwise, we know that the sequence is invalid. We can repeat this process for all 4 combinations
of the two parts and find the one that is valid.

Overall, we the expected total number of queries is O(n log n), the solution needs to be implemented
carefully as to keep the constant reasonably small.

1


